Assessing Coastal Dune Lake Health

Overview

- Background
 Broiget Coole
- Project Goals
- Methods
- Results

The Lakes

- Rare
- Dynamic
 - Rainfall
 - Connections to Gulf
- Beautiful Landscape
 - Attracts visitors
 - Residences
- Constant Change

The Lakes - 1941

- Concerns about change
- Preservation
- Water Quality

The Lakes - 1969

Development
 over the last
 50 – 60 years

The Lakes - 2016

•Changes continue...

Finding balance between humans and nature

Project Goals

- Evaluate changes to Comp. Plan.
- Evaluate Current CDL conditions and relate them to watershed pollutant loading characteristics.
- Provide framework for assessing changes in CDLs.

Methods

- Preliminary Data Analysis
- Additional Data Collection
- Data Analysis

- Future Scenario Modeling
- Stakeholder Meetings

Pollutant Loading Model

Inputs (and source):

- Drainage basins (LiDAR)
- Soils (NRCS)
- Land Use (NWFWMD with updates)
- BMPs (LiDAR)
- Septic tanks (DoH with updates)
- Point sources (none?)
- EMCs (literature values)
- Runoff Coefficients (literature values)
- BMP efficiencies (literature values)
- Rainfall (NOAA)

Pollutant Loading Model

- Evaluate effectiveness of BMPs
- Range of human disturbance across the lakes?
- Measure a biological endpoint that is sensitive to the type of disturbance the BMPs are designed to mitigate
 - Physical disruption
 - Nutrients/water quality issues

EPA Biological Condition Gradient

Janicki Environmental, Inc.

Natural structural, functional, and taxonomic integrity is preserved.

Structure & function similar to natural community with some additional taxa & biomass; ecosystem level functions are fully maintained.

Evident changes in structure due to loss of some rare native taxa; shifts in relative abundance; ecosystem level functions fully maintained.

Moderate changes in structure due to replacement of sensitive ubiquitous taxa by more tolerant taxa; ecosystem functions largely maintained.

Sensitive taxa markedly diminished; conspicuously unbalanced distribution of major taxonomic groups; ecosystem function shows reduced complexity & redundancy.

Extreme changes in structure and ecosystem function; wholesale changes in taxonomic composition; extreme alterations from normal densities.

Watershed, habitat, flow regime and water chemistry as naturally Chemistry, habitat, and/or flow regime severely altered from natural conditions.

Parameter Selection

- Biological Communities
 - Phytoplankton: covered in modeling exercises
 - Invertebrates: confounded by water color
 - Fish/vertebrates: not sensitive enough
 - Lake plants: early responders to landscape disturbance and nutrients

Additional Data Collection

Janicki Environmental, Inc.

- CDLs sampled for:
 - Lake Habitat
 Assessment
 - Vascular plant communities
 - Physical/chemical parameters
- May 8 11, 2017

Access thanks to Susan Pallidini, Mebane Cory-Ogden, Jim Bob Sellars, Bill Crane, Matthew Allen, Patrick Hartsfield

FDEP Lake Habitat Assessment

- FDEP SOP FT 3200
- Lake-wide score based on assessing:
 - Stormwater inputs
 - Bottom substrate quality
 - Adverse lakeside alterations
 - Upland buffer zone
 - Adverse human watershed land use

Janicki Environmental, Inc.

ONES

_OGIC

Ϝημινης

Vascular Plant Sampling

- FDEP SOP LVI 1000
- Lake divided into 12 total sections. Four sampled for plants in a pattern, with random start
 - 4 species lists generated per lake, identified to lowest practical taxonomic level
 - Community attributes calculated from taxa lists

Results of Human Disturbance Measurements

Habitat Assessment Results

Janicki Environmental, Inc.

Habitat Assessment Total Scores: Sorted

Related Lake Habitat Assessment Measure Walton County Lake **Protection BMP** Septic tanks drain fields 100 feet Upland Buffer Zone. A buffer zone of >18 m (59 ft) is considered optimal. away Stormwater Inputs. Sheet flow over an uncultivated Untreated stormwater runoff should vegetated buffer zone is considered optimal not enter the lake. **Erosion control** Stormwater Inputs. Good BMPs (buffers, swales, retention areas, etc.) score high No hazardous wastes Stormwater Inputs. Adverse Watershed Land Use Seawalls, bulkheads, stc. not Lakeside Adverse Human Alterations. Perimeter of the lake assessed for human structure permitted **Endangered species habitat** Upland Buffer Zone. Width of vegetated zone No new point or NPS Adverse Watershed Land Use

Setback required = 100 feet Upland Buffer Zone. Lakeside vegetated zone, >18 m

Preserve 60 % within 300 feet

Upland Buffer Zone. Lakeside vegetated zone, >18 m

Habitat Assessment Score Regressed Against 30 m BMP Attainment

Adj R2 = 0.66148 Intercept = 12.693 Slope = 0.67845 P = 7.747e-05

Vascular Plant Community Results

Measures of biological community health that respond to human disturbance in a predictable manner

Explored use of metrics previously found to be effective

Percent Native Plants and Habitat Assessment

Adj R2 = 0.33572 Intercept = 80.939 Slope = 0.15092 P = 0.010986

Dominant C of C and Habitat Assessment

Adj R2 = 0.40585 Intercept = 2.582 Slope = 0.03474 P = 0.0047309

Percent Sensitive Plants and Habitat Assessment

Adj R2 = 0.062181 Intercept = 9.3842 Slope = 0.18149 P = 0.17971

Percent Invasive species and Habitat Assessment

Adj R2 = 0.23263 Intercept = 13.5 Slope = -0.096442 P = 0.033625

Comparison of FDEP LVI to CDL IBI Adj R2 = 0.91733 Intercept = 23.368 Slope = 21.322 P = 3.5305e-09 100-Western R2= 0.92, p < 0.01 Fuller Powell Campbell Eastern Salinity (ppt) Morris FDEP LVI 80-20 Camp Creek Allen Draper 15 Deer Alligator 10 Little Redfish 5 **Big Redfish** 60-Grayton Stallworth Oyster 1.5 2.0 2.5 3.0 3.5 CDL IBI

CDL Plant Index and Lake Vegetation Index

Human Disturbance Gradient and Plant IBI for CDLs

Adj R2 = 0.28 Intercept = 1.5498 Slope = 0.29875 P = 0.020411

LVI Score and Salinity for Walton County CDLs

Adj R2 = -0.046413 Intercept = 74.401 Slope = 0.30111 P = 0.5721

Links Between Biological Response and Water Quality/BMPs

Random Forest variable importance

 Quantifies the relative importance of physical and water quality variables influencing plant community response

HA.Stormwater				
HABottom.Substrate			•••••	
HA.Watershed.landuse			•••••	
HA.Lakeside.Alterations			•••••	
TP			. •	
HA.Upland.Buffer				
LDI_watershed		•••••		
LDI_100m		••••••		
SALIN	(•		
PH)		
DOSAT	••••			
SD				
TN	•			
	-5	0	5	10
	% Incorporated Mean Square Erro			
enhorg Ecol ogic	· ····			

Input data collected by CBA and Frydenborg EcoLogic

- Lake Habitat Assessment is relevant for gauging conditions consistent with the BMPs:
 - "Crosswalk" between the Walton County Lake Protection BMPs and the FDEP Lake Habitat Assessment (HA), and
 - CDL-specific 30 m setback GIS exercise

- Four plant metrics were used to derive a CDLspecific, multi-metric vascular plant Index of Biological Integrity (IBI)
- Very strong relationship between CDL-IBI and FDEP Lake Vegetation Index (LVI)

- Random Forest Model indicated that five best predictors of plant biological index were:
 - Stormwater inputs,
 - Bottom substrate quality,
 - Lakeside alterations,
 - Watershed landuse, and
 - TP

• The analyses thus far provide evidence that the elements of the Walton County lake protection BMPs are expected to be effective in the future for maintaining and/or restoring biological health in the CDLs

- Watershed pollutant loading model
- Empirical analysis
- Future modeling scenarios
- Final analysis & report
- Stakeholder meetings

Questions?

